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Internal waves in a continuously stratified 
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A stably stratified shear flow has the velocity profile V (  1 - e-yIh) and the density 
profile log(p,/p) = ~ ( l - e - y / ~ )  in 0 < y < 00 and is bounded by the rigid plane 
y = 0. It is proved that small disturbances with respect to this basic flow are 
stable for all wavelengths and Richardson numbers. The eigenvalues for neutral 
disturbances (internal gravity waves) are enumerated. The results are applicable 
to the atmosphere and to an infinitely deep ocean. 

1. Introduction 
We consider the heterogeneous shear flow described by the velocity profile 

U(y) = V (  1 - e--Y/h) 

and the density profile 

h(y) = log [p,/p(y)] = cr( 1 - e--Y/h) (0 < cr < 1) (1.2) 

in an inviscid, incompressible fluid that is bounded by a rigid horizontal plane, 
y = 0, and fills the half-space y > 0; x and y are Cartesian co-ordinates. Describing 
travelling-wave disturbances, relative to this basic flow, by the perturbation 
stream function 

9+ = Re{~(y)exp[ik(x-ct)l} (0 < Y < 0O), (1.3) 

we seek an enumeration of the admissible values of the wave speed c. 

values of the dimensionless wave and Richardson numbers, say 
It would be desirable to obtain this enumeration for arbitrary prescribed 

a = kh, J = Cgh/V2. (1.4a, b )  

In fact, we find it necessary to give the enumeration for a prescribed value of the 
local Richardson number at  y = yc, where U(y,) = c. The local Richardson 
numbers for arbitrary y and y = yc are given by 

(1.5a, b )  

where the introduction of w, anticipates (2 .3~)  below. 
The only heterogeneous shear flow over a rigid boundary for which the ad- 

missible c have been enumerated is that described by a linear velocity profile and 
an exponential density profile, say U = Vy/h and h = cry/h; these profiles can be 

t Also Department of the Aerospace and Mechanical Engineering Sciences. 
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J (y )  = gh’(y)/U2(y) = J(yc) = JV/ (V- -c )  = Jw,, 
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obtained from (1.1) and (1.2) by letting h+ co with V / h  and cr/h fixed. This con- 
figuration was considered originally by Taylor (1931), who demonstrated that no 
waves exist for 0 < J < and that an infinite number of neutral, retrograde 
waves exists for J > 4. Taylor conjectured, but was unable to demonstrate, that 
no unstable waves exist for J > a; Eliassen, H d a n d  & Riis (1953) gave the 
required proof. See also Case (1960) and Dyson (1960). 

Taylor’s configuration, regarded as a model of a shear layer with a scale small 
compared with the height of the atmosphere, has the disadvantage of unbounded 
U(y) and h(y) .  It seems natural to consider the effects of requiring U(y) and h ( y )  
to be bounded and, in particular, to inquire whether there exist neutral waves 
with phase speeds in excess of the maximum wind speed (we anticipate that such 
waves do exist). A consideration of the differential equation for r$(y), (2.1) below, 
with special reference to its singularities (see Miles 1963 for a detailed discussion), 
reveals that the heterogeneous shear flow described by (1.1) and (1.2) is the 
simplest possible under the restrictions that U ( y )  and h(y) be both bounded and 
continuous. The resulting differential equation has three regular singularities, 
and the eigenvalue problem reduces to the determination of the zeros of the 
hypergeometric function. We emphasize, however, that (1.1) implies U”(y) < 0 
everywhere, in consequence of which our conclusions are not likely to be signi- 
ficant for velocity profiles that possess flex points, which typically imply in- 
stability for J = 0. The homogeneous ( J  = 0 )  shear flow described by (1.1) 
corresponds to the asymptotic form of a boundary layer with suction and is stable 
for all cc (Hughes & Reid 1965). 

We have posed the velocity and density profiles of (1 .1)  and (1.2) in an essen- 
tially atmospheric context ( U  increasing and p decreasing with y). We obtain 
the corresponding oceanographic problem if we replace (1.1)-( 1.3) by 

@ = R e { $ ( y ) e x p ( i k [ x - ( V - c ) t ] ) }  ( -00 < y < O ) ,  (1.6) 

U(y) = Veg/h  (1.7) 

and h ( y )  = cr(eg/h-  1). (1.8) 

The boundary condition of vanishing vertical displacement a t  y = 0, as posed in 
(2.2 u)  below, is appropriate for internal waves in a stratified ocean provided that 
the characteristic speed V is small compared with the speed of surface waves; this 
requires 

which is satisfied by typical ocean currents. 

kV2/g  = (c~/J) tr  < 1, (1.9) 

2. Formulation of the eigenvalue problem 
The restriction < 1 permits the usual Boussinesq approximation, whereby 

the density is regarded as constant except in the calculation of the specific 
buoyancy force, gh’(y). The resulting differential equation for $(y) is 

qY + [gh’( U-c)-2-- Un(  U-c)- l -  k2]4  = 0. (2.1) 
Invoking the requirements that the vertical displacement vanish at the lower 
boundary and that the solution be bounded at infinity, we obtain the boundary 

conditions (U--c)-1$6 = 0 (y = O ) ,  $6 = 0 (y = 00) (2.2u, b )  
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which, together with (2.1), define the eigenvalue problem. See Miles (1961,1963) 
for a more complete discussion of this formulation. 

Introducing the transformation? 

$(y )  = e-kvf(w), w = w 0 wo = V / ( V - c ) ,  (2.3a, b, c )  

we find that f (w) satisfies Riemann’s differential equation 

(2.4) 

(2.5) 

f = P 0 a-(l+a2)4 $ ( 1 + v )  w , 
-2a a+(l+a2)4 &(1-v)  

v = (1 - 4JW,)t = ip. 

f ( w )  = (1 - w)@+”)P(u, b ;  1 + 2a; W) = (1 - w ) ~ ( ~ + ” ) F ( w ) ,  (2.6) 

where a, b = $ ( l + v ) + a T  (l+aZ)+, (2.7) 

P(w)  is the hypergeometric series in a w-plane cut along (1, a), and we omit an 
arbitrary constant multiplier. Invoking the transformation formulas for P(w),  
we obtain the alternative representations 

(2.8) 

+ A ( l - ~ ) * ( l - ~ ) P ( a * ,  b*; 1-v; 1-w), (2.9) 

i co 1 

[ o  
where 

Invoking (2 .2b) ,  which implies that f ( w )  must be regular at w = 0, we choose 

f ( w )  = (1 - w ) ~ ~ - ” P ( u * ,  b*; 1 + 2a; W )  (1 - w)t(’-”)P*(w) 
and f(w) = A*(1- w)g(l+”)P(~, b; 1 + V ;  1 - W )  

where A = r(i +2a)r(v) /r(a)r(b) ,  (2.10) 

and the asterisk implies the transformation v 4  - v (but P* is the complex con- 
jugate of F if and only if wo is positive-real and J ,  > k). 

Invoking the boundary condition (2.2 a) ,  we obtain the eigenvalue equation 

(1 - wo)*‘-l+”)P(wo) = 0. (2.11) 

3. Distribution of eigenvalues 
We require the roots of (2.11) or, equivalently, the zeros of the hypergeometric 

function P(wo) in a plane cut along w, = (1, co). The transformation ( 2 . 3 ~ )  implies 
a one-to-one mapping of the c-plane on the w,-plane, with real c mapping on to 
real wo according to c = (-m, 0, V ,  a ) + w o  = ( O + ,  1, co, 0-  ); see table 1. 

It evidently is expedient to describe the distribution of the zeros in terms of the 
parameters a and v, rather than a and J .  Assuming first that v is real (Jw,  < a), 
so that each of the hypergeometric parameters a, b, and 1 + 201 also is real, we 
find (see Van Vleck 1902) that F(wo) has (i) one zero in wo = (0, 1) if and only 
if 0 < v < v,; (ii) no zeros in wo = (1,  00); and (iii) n zeros in w, = (-a, 0) if 
vn < v < v , + ~ ,  where 

vo(a) = 2(1+a2)&-2a-  1 (a 6 2) ( 3 . 1 ~ )  

= o  (a 2 2) (3.lb) 

and vn(a) = 2[(1+a2)t+a]+2n+1. (3.2) 

These results are tabulated in rows (ia), (ii), (iii) of table 1. 

t The sign of y must be changed in the exponents of (2 .3a,  b) if (1.1)-(1.3) are replaced 
by (1.6)-(1.8). 

20-2 
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A new zero of F(w,) must originate at one of the two singular points, w, = 1 
(c = 0) or w, = co(c  = V ) .  In  particular, .F(wo) gains a zero a t  w, = 1 - as v 
decreases through v,(a) and at w, = - co as Y increases through v,(a). The former 
transition is governed by the analytical continuation (2.9), from which we infer 
that c / V +  -[&v,-v)B(l +2a,  v , ) ] l /Vo ,  ( l -4J)4+vo(a)-  (3.3a 

= - ( J - a ) ,  (0 < a < J < 1). (3.3b) 

C V N 

(ii) (0, V )  (1, a) (0, 1) 0 

(iii) (V ,  a) (-a, 0) (V9v  Vn+J  ?b 

TABLE 1. The distribution of the eigenvalues. N is the 
number of eigenvalues in the indicated range of c 

Similar results, governing the appearance of a new eigenvalue a t  w, = - 00 as v 
increases through v,(a), can be obtained from the analytical continuation of 
F(w,) into the neighbourhood of w, = - co with b* + - n. We remark that there 
is an infinite number of such zeros, with 

- J W , + & ( V ~ - ~ ) ,  w,+ -w, J+O+ (n = 1,2, ...), (3.4) 

in consequence of which c = V + is a limit point for the eigenvalues in c > Y, and 
the limiting case of a homogeneous shear flow ( J  = 0) is degenerate. 

A necessary condition for complex c is the existence of singular neutral modes, 
for which 0 < c < Y (1 < w, < co), along some locus in an (a, v)-plane; singular 
neutral modes cannot exist for imaginary values of v (Miles 1961). Having 
demonstrated that F(w,) has no zeros in w, = (1,co) for real values of Y, we infer 
that there are no unstable modes for any a and J .  

Now let Jw, > 1, so that v is imaginary. Setting v = i,u in (2.9) and (2.10), we 
rewrite (2.11) in the form 

Re{A*(l - wO)J(-l+@)F(a, b; 1 +ip; 1 - w,)} = 0, (3.5) 

where the asterisk now implies complex conjugation. Following the proofs given 
by Taylor (1931) and Dyson (1960) for the corresponding equations involving a 
Hankel function and a confluent hypergeometric function, respectively, we can 
prove that (3.5) has an infinite number of zeros in w, = (0, 1) and that these 
zeros have a limit point at w, = 1 - (c = 0 - ). There are no other zeros since, 
by hypothesis, Jw, > 0, and w, = (1 ,  co) is excluded for imaginary values of v. 

We designate the zeros in w, = (0, 1) for imaginary values of v by (ib); see 
table 1. The transition from (ia) to (ib), wherein the infinite set of eigenvalues in 
Jw, > $ goes over to a set of either one or zero eigenvalues in 0 < Jw, < $, must 
occur at the singular point w, = 1. Letting v+O and wo+ 1-  in (2.10) and ( 3 4 ,  
we obtain t8he limiting eigenvalue equation 

- ( J -  $)i cot [ ( J -  t)*log (1 - w,)] = &v,(E) (J+&, w,+ 1 -), (3.6) 
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where v0(a) is now given by (3 . la)  for all a > 0. The left-hand side of (3.6) takes 
any value in ( - co, 00) an infinite number of times as wo+ 1 - with J > 4 and 
tends t o  (g- J ) t  < Q as wo+ 1 - with J < $. The right-hand side decreases 
monotonically from 4 to 0 as a increases from 0 to $ and is negative for a > 2. It 
follows that (3.6) has an infinite number of roots with a limit point at  wo = 1 - 
for J > and any a and either one or no roots for J < t and a < Q or a > 2, 
respectively. 

4. Asymptotic solutions 
We consider briefly the limits a+co and J+m. 
The most direct approach for a .+ co appears to follow from the introduction of 

2 = a(1-w)  = a ( U - c ) / ( V - c )  (4.1) 

( 4 4  

in place of w in (2.3). We then obtain 

$ N z~e--k~+sK av( z ) [ I+  O(l /a) l  (a + m), 

where K+ is a modified Bessel function of the second kind. The corresponding 
eigenvalues are the roots of 

K+v[-ac/(V-c)] = 0 (a+co) (4.3) 

and, as might have been anticipated, are identical with these for Taylor’s con- 
figuration and belong to (ib) of table 1. 

Turning to the limit J-+co, we find that the hypergeometric series of (2.7) has 
the asymptotic approximation 

F ( w )  N r(l+ 201) ( J w o w ) - ~ J 2 ~ { 2 ( J w o w ) ~ } { l  +O(Jw0)-l} (Jwo.+oo). (4.4) 

The corresponding zeros of P(wo) belong to (ib) of table 1 and are given by 

w0 = QJ-*x,(a) (J+oo), (4.5) 

where z,(a) (n = 1, 2, ...) are the positive zeros of J&(x). Abandoning our 
dimensionless notation, we obtain 

c = V-2(~gh)*z , l (a)  (V2/ggh+O), (4.6) 

which contains the limiting result for gravity waves in a stratified fluid without 
shear (V  = 0). 

5. Conclusions 
We conclude that the heterogeneous shear flow described by (1.1) and (1.2) is 

stable with respect to small disturbances of all wavelengths and will support an 
infinite number of internal gravity waves with wave speeds that lie outside of the 
range of wind speeds, (0, V ) ,  but have limit points a t  c = 0 -  for J > and at  
c = V +  for J = O + .  

This work was partially supported by the National Science Foundation and 
by the Office of Naval Research. 
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